Муниципальное общеобразовательное учреждение средняя школа $\ Modern$ 3 Тутаевского Муниципального района

Согласовано	Утверждаю.	down of Da
на заседании МС	Директор школы:	AND BANK
Протокол №	Pau	ёва Н.А
«»2021 г.	«»	2021 г.

Дополнительная общеобразовательная программа по техническому направлению

«ОСНОВЫ ПРОГРАММИРУЕМОЙ МИКРОЭЛЕКТРОНИКИ НА БАЗЕ МИКРОКОНТРОЛЛЕРА ARDUINO»

Возраст обучающихся 12-14 лет Срок реализации 68 часов

Составитель:

Шилкова Е.И.

СОДЕРЖАНИЕ

Пояснительная записка	3
Организация образовательного процесса	5
Учебно-тематическое планирование	6
Планируемые (ожидаемые) результаты	
Обеспечение программы	13
Список литературы	13

Пояснительная записка

Среда обитания современного человека насыщена разнообразными электронными устройствами, которые будут и в дальнейшем развиваться и совершенствоваться. Другая сторона этого явления — упрощение самого процесса создания электронного устройства. Благодаря накопленным разработкам, он может быть настолько простым, что с ним справится и ребёнок. В частности, такую возможность предоставляет вычислительная платформа Arduino.

На базе этой платформы ученики могут конструировать и программировать модели электронных управляемых систем, не вдаваясь в сложные вопросы схемотехники и программирования на низком уровне. Причём эта уникальная инженерно-конструкторская среда имеет низкий порог вхождения и не имеет потолка. Конструировать и программировать простые устройства управления новогодней гирляндой или передачи акустических сигналов азбукой Морзе, несложные электронные игрушки ребёнок может уже на первых шагах знакомства с Arduino. В то же время Arduino используют профессиональные программисты и «продвинутые» любители в сложных конструкциях управления робототехническими устройствами. Интегрированная среда разработки Arduino — это кроссплатформенное приложение на Java, включающее в себя редактор кода, компилятор и модуль передачи прошивки в плату.

Учебный курс «Основы программируемой микроэлектроники. Создание управляемых устройств на базе вычислительной платформы Arduino» входит в образовательную область «информатика». Он включает 68 часа аудиторных занятий и самостоятельную работу учащихся. Курс может быть использован для профильной подготовки учащихся в классах физико-математического и информационно-технологического профилей. В неполном объёме курс может быть использован также при изучении информатики и технологии в непрофильных классах.

Курс также предполагает знакомство с основами программированием на языке высоко уровня.

Предметом изучения являются принципы и методы разработки, конструирования и программирования управляемых электронных устройств на базе вычислительной платформы (контроллера) Arduino или её клона.

Целесообразность изучения данного курса определяется:

- востребованностью специалистов в области программируемой микроэлектроники в современном мире;
- возможностью развить и применить на практике знания, полученные на уроках математики, физики, информатики;
- возможностью предоставить ученику образовательную среду, развивающую его творческие способности и амбиции, формирующую интерес к обучению, поддерживающую самостоятельность в поиске и принятии решений.

Цель программы: продолжение обучения основам электроники и программирования на базе микроконтроллерной платы Arduino, а также подготовка к участию в олимпиадах по данному направлению.

Задачи программы

Обучающие:

- продолжить изучение языка C++;
- научить создавать более сложные проекты;

Развивающие:

- развивать память, логическое мышление и пространственное воображение;
- развить самостоятельность и ответственность в выполняемой работе творческих проектов;

Воспитательные:

- воспитывать коммуникативные навыки сотрудничества в коллективе,
 группе;
- воспитать интерес к техническому виду творчества;
- воспитывать самостоятельность, ответственность.

Организация образовательного процесса

Отличительные особенности данной программы

Отличительная особенность от других программ дополнительного образования заключается в том, что состоит из проектов, расположенных по сложности изучаемого материала и увеличением доли практических занятий. Практические занятия по программе связаны с использованием вычислительной техники: компьютеров и комплектов Arduino, а также дополнительных датчиков. Программа ориентирована на применение электротехнических и робототехнических средств в жизни человека.

Возраст обучающихся. Условия набора.

Дополнительная программа рассчитана для обучающихся с 12 до 14 лет. Прием учащихся производится на основании письменного заявления родителей. Для более эффективной работы группы формируются разновозрастными детьми. Набор производится, начиная с 1 сентября текущего года.

Срок реализации программы

Срок реализации программы: 1 год. Объем программы: 68 часов. Период обучения: сентябрь – май.

Формы и режим занятия

В процессе реализации программы используются следующие формы учебных занятий:

- фронтальные (беседа, лекция, проверочная работа);
- групповые (лабораторные работы);
- индивидуальные (инструктаж, разбор ошибок, индивидуальная сборка робототехнических средств).

Наполняемость группы – от 1 до 12 человек.

Режим занятий

Занятия проводятся два раза в неделю продолжительностью 2 академических часа.

Учебно-тематическое планирование

No	Тема. Содержание темы	Количество часов		Содержание практической	Г ом т роду		
745		Теория	Практика	части	Контроль		
	Модуль 1. Основные понятия микроэлектроники. Основные принципы программирования микроконтроллеров. Датчики для микроконтроллера. (16 часов)						
1	Техника безопасности в кабинете информатики и робототехники. Знакомство с контроллером Arduino. Микроконтроллеры в нашей жизни, контроллер, контролер Arduino, структура и состав Arduino.	1,5	0,5	 Простейшая программа (прожектор) Самостоятельное перепрограммирование прожектора на другие пины. 	Контрольные вопросы Результат практикума		
2	Обзор языка программирования Arduino. Среда разработки Arduino IDE. Работа в Arduino. Альтернативное программное обеспечение для Arduino. Основные функции в языке. Функция setup(). Функция loop(). Переменные в программе.	1	1	 Маячок Маячок с нарастающей яркостью Прожектор с управляемой яркостью 	Контрольные вопросы Результат практикума		
3	Основы проектирования и моделирования электронного устройства на базе Arduino. Электронные компоненты. Понятие электричества. Электрические схемы. Основные законы электричества. Макетная доска и мультимер. Аналоговые и цифровые сигналы, понятие ШИМ.	1	1	 Сборка и чтение электрических схем. Железнодорожный светофор Модель пламени свечи 	Контрольные вопросы Результат практикума		
4	Периферия Arduino. Виды периферийного оборудования. Однокомпонентные устройства. Резистор. Диод. Светодиод, светодиодные сборки. Двигатель напряжения. Подключение датчика звука. Датчик освещенности.	1	1	 Светофор, срабатывающий по кнопке Кнопочные ковбои Телеграф Диммер 	Контрольные вопросы Результат практикума		
5	Массив. Понятие массива. Применение массивов. Массивы символов. Пьезоэффект. Управление звуком.	1	1	 Счетчик нажатий Секундомер 	Контрольные вопросы Результат практикума		
6	Модули и сложные датчики. Моторы и приводы. Сервопривод. Аналоговый термометр. Ультразвуковой дальномер. ИК-приёмник. Работа с LCD-дисплеем. Роль сенсоров в управляемых системах. Аналоговые сигналы на	1	1	 Автоматически диммер Умное освещение Элементарный синтезатор 	 Контрольные вопросы Результат практикума 		

	входе Arduino. Использование монитора последовательного порта для наблюдений за параметрами системы.				
7	Сенсоры. Датчики Arduino. Роль сенсоров в управляемых системах. Сенсоры и переменные резисторы. Делитель напряжения. Потенциометр.	1	1	 Консольный люксметр Экранный люксметр HTML-термометр 	 Контрольные вопросы Результат практикума
8	Промежуточная аттестация по пройденному материалу. Подготовка к тестированию. Повторение материала.	1	1	1. Индивидуальные задания по сборке схем и программированию, теоретическим знаниям по электронике	1. Результат тестирования
	Модуль 2. Прак	тическое приме	енение микрок	онтроллеров (14 часов)	
9	Цифровые индикаторы. Применение массивов. Назначение, устройство, принципы действия семисегментного индикатора. Управление. Массив данных. Электронные часы.	0,5	1,5	 Перетягивание каната Ультразвуковая линейка Парктроник 	1. Результат практикума
10	Часы реального времени. Создание часов реального времени.	0,5	1,5	1. Модель электронных часов	1. Результат практикума
11	Библиотеки. Что такое библиотеки. Использование библиотек в программе. Установка, создание библиотек. Библиотека math.h. Использование математических функций в программе.	1	1	1. Комнатный термометр 2. Метеостанция	1. Результат практикума
12	Дистанционное управление на Arduino Uno. Управление ИК-приемником с помощью пульта.	1	1	 Сканер ИК-пультов ИК-выключатель света Пульт киномана 	1. Результат практикума
13	Транзистор – управляющий элемент схемы. Назначение, виды и устройство транзисторов. Использование транзистора в моделях, управляемых Arduino.	0,5	1,5	1. Пульсар 2. Пантограф	1. Результат практикума
14	Индикатор громкости звука на Arduino Uno. Создание индикатора громкости звука с помощью пьезопищалки и светодиодов. Подготовка к тестированию. Повторение материала.	0,5	1,5	1. Пианино 2. Терменвокс	1. Результат практикума

15	Промежуточная аттестация по пройденному материалу. Тестирование по практической и теоретической части материала курса.	1	1	1. Тест 2. Индивидуальные задания по сборке схем и программированию, теоретическим знаниям по электронике	1. Результат тестирования
	Модуль 3. Практическое применение микроко	нтроллеров. Сал	мостоятельно	ое выполнение проектов на базе Arduino Un	о (20 часов)
16	Управление двигателями. Разновидности двигателей: постоянные, шаговые, серводвигатели. Управление коллекторным двигателем. Управление скоростью коллекторного двигателя. Управление серводвигателем: библиотека Servo.h.	1	1	 Миксер Пантограф Переезд 	Контрольные вопросы Результат практикума
17	Управление микроконтроллером Arduino через USB. Использование Serial Monitor для передачи текстовых сообщений на Arduino. Преобразование текстовых сообщений в команды для Arduino.	0,5	1,5	 Тестер батареек Светильник, управляемый по USB Умный шлагбаум 	1. Результат практикума
18- 19	Беспроводная связь. Подключение модулей беспроводной связи. Чтение datasheet, GSM, Bluetooth и др. Подключение Bluetooth-модуля к Arduino. Управление светодиодом, подключенным к Arduino, с компьютера и планшета. Передача данных с Arduino на компьютер и планшет. Специальные приложения на компьютере и смартфоне для удобного интерфейса взаимодействия с Arduino по Bluetooth.	1	3	 Генератор паролей Ехсеl-робот Тревожная кнопка Настольный радар 	 Контрольные вопросы Результат практикума
20- 21	Wi-Fi. Подключение устройства к Wi-Fi-сети с помощью специального модуля. Создание и применение различных автономных устройств с использованием модуля Wi-Fi.	1	3	 Удаленный термометр Система регистрации данных Напоминальник 	Контрольные вопросы Результат практикума
22	Настройка Wi-Fi-модуля для специализированных устройств.	0,5	1,5	1. Умный дом	1. Результат практикума
23	Создание Telegram-бота	0	2	1. Telegram-бот	1. Результат практикума
24- 25	Сборка моделей набора РОБОНЯША	0	4	 Одометр Спидометр Марсоход Чистюля 	1. Результат практикума

				5. Следопыт	
				6. Нехочуха	
				7. Прилиала	
l	Модуль 4. Сборка набора РОБОНЯША. Разработка, прое	· ктирование, пре	едставление и		Arduino Uno (18 часов)
	Сборка моделей набора РОБОНЯША	, <u>, , , , , , , , , , , , , , , , , , </u>		8. Одометр	, ,
	•			9. Спидометр	
26				10. Марсоход	D
26- 27		0	4	11. Чистюля	Результат
21				12. Следопыт	практикума
				13. Нехочуха	
				Прилиала	
	Соревнования РОБО-СУМО				1. Проведение
28		0	2	1. Робо-СУМО	соревнований на
					ринге
	Работа над индвидуальным творческим проектом				1. Разработанный
	автономного электронного устройства				авторский проект
29-		0	8	1. Индивидуальная работа над проектом	автономного умного
31		· ·	O	1. Индивидуальная расота над проектом	устройства на базе
					микроконтроллера
					Arduino Uno
	Защита индивидуального проекта. Обоснование своих				1. Оценка
33	проектов.	0	2	1. Итоговая презентация проектов	представленных
					проетов
	Заключительная конференция			1. Обобщение знаний за учебный год по	
34		0	2	Arduino Uno. Подведение итогов по	
				Arduino Uno.	
ИТОГО ЧАСОВ: 68					

Планируемые (ожидаемые) результаты

Личностные результаты — это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении робототехники в основной школе, являются:

- -проявление познавательных интересов и активности в данной области;
- -воспитание активного эмоционально-эстетического отношения к окружающему миру;
- -воспитание аккуратности и дисциплинированности при выполнении работы;
- -формирование общей культуры поведения, навыков культуры труда; воспитание воли, усидчивости, трудолюбия, уважения к своему труду и труду окружающих, стремление к достижению результата поставленной цели;
- -формирование опыта совместного творчества;
- -развитие трудолюбия и ответственности за качество своей деятельности;
- -самооценка своих умственных и физических способностей для труда в различных сферах с позиций будущей социализации и стратификации;
- -осознание необходимости общественно полезного труда как условия безопасной и эффективной социализации.

Метапредметные результаты - освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в других жизненных ситуациях. Основными метапредметными результатами, формируемыми при изучении робототехники в основной школе, являются:

- планирование процесса познавательно-трудовой деятельности;
- определение адекватных условиям способов решения учебной или трудовой задачи на основе заданных алгоритмов;
- проявление нестандартного подхода к решению учебных и практических задач в процессе моделирования изделия или технологического процесса;
- самостоятельная организация и выполнение различных творческих работ;

- приведение примеров, подбор аргументов, формулирование выводов по обоснованию технико-технологического и организационного решения; отражение в устной или

письменной форме результатов своей деятельности;

- выбор для решения познавательных и коммуникативных задач различных источников информации, включая энциклопедии, словари, интернет-ресурсы и другие базы данных;
- владение общепредметными понятиями «объект», «система», «модель», «алгритм», «исполнитель» и др.;
- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- владение основными универсальными умениями информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т. д., самостоятельно перекодировать информацию из одной знаковой системы в

другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;

Предметные результаты включают: освоенные обучающимися в ходе изучения учебного предмета умения, специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами. Основными предметными результатами, формируемыми при изучении робототехники в основной школе, являются:

- способность реализовывать модели средствами вычислительной техники;
- конструировать по условиям, заданным учителем, по образцу, по чертежу, по заданной схеме и самостоятельно строить схему.
- владение основами разработки алгоритмов и составления программ управления роботом;
- умение проводить настройку и отладку конструкции робота.

Формы подведения итогов реализации программы

Подведение итогов по результатам освоения программы проводится в виде контрольной работы, тестирования, выполнения проектов.

Обеспечение программы

Организационно-педагогические условия реализации образовательной программы обеспечивают ее реализацию в полном объеме, качество подготовки обучающихся, соответствие применяемых форм, средств, методов обучения и воспитания возрастным, психофизическим особенностям, склонностям, способностям, интересам и потребностям обучающихся.

Форма обучения во время реализации программы технической направленности «Основы программируемой микроэлектроники. Создание управляемых устройств на базе вычислительной платформы Arduino» - очная. Образовательная деятельность обучающихся проходит в виде групповых занятий. Занятия проводятся в форме совместной образовательной деятельности педагога с детьми.

Наполняемость групп не более 12 человек.

Перечень технических средств обучения: ноутбуки.

Перечень учебно-методических материалов: набор Матрешка Z, набор Йода, набор Интернет вещей, дополнительные датчики, программа Arduino.

Список литературы

- 1. Arduino. Полный учебный курс. От игры к инженерному проекту / А. А. Салахова, О. А. Феоктистова, Н. А. Александрова, М. В. Храмова. Электрон. изд. М. : Лаборатория знаний, 2020. —178 с
- 2. Основы программирования микроконтроллеров: Учебно-методическое пособие к образовательному набору по микроэлектронике «Амперка»: образовательный робототехнический модуль (базовый уровень). Авторы: Артем Бачинин, Василий Панкратов, Виктор Накоряков. Издательство: Экзамен, 2017
- 3. Дистанционный курс на сайте amperka.ru http://wiki.amperka.ru/конспект-arduino